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Introduction: At least some meteoritic nano-
diamonds are likely of presolar origin because of their 
association with anomalous Xe-HL and Te isotopic 
components indicative of a supernova (SN) origin 
[1,2].  But the abundance of Xe is such that only ~1 in 
106 nano-diamonds contains a Xe atom, and the bulk 
13C/12C composition of nano-diamond acid residues is 
chondritic (solar) [3].  Therefore, it is possible that a 
significant fraction of meteoritic nano-diamonds 
formed within the solar nebula. Nano-diamonds have 
recently been detected for the first time within the ac-
cretion discs of young stars by the Infrared Space Ob-
servatory (ISO) [4].  No comparable evidence of nano-
diamonds in the interstellar medium has yet been 
found.    We have identified nano-diamonds in acid 
etched thin-sections of meteorites, polar micrometeor-
ites, and interplanetary dust particles (IDPs) with the 
goal of determining their distribution as a function of 
heliocentric distance [5].  (It is assumed the meteorites 
and the polar micrometeorites are from asteroids at 2-4 
AU and at least some of the IDPs are from comets at 
>50AU).  We found that nano-diamonds are heteroge-
neously distributed throughout carbon-rich meteoritic 
materials (we identified them in some IDPs and not in 
others), and that their abundance may actually de-
crease with heliocentric distance, consistent with the 
hypothesis that some of them formed within the inner 
solar system and not in a presolar (SN) environment.  
   In order to gain further insight about the origins of 
meteoritic nano-diamonds we are currently investigat-
ing their distribution in unetched thin-sections.  We 
have examined a chondritic cluster IDP (U220GCA), 
fragments of the Tagish Lake (CM1) meteorite, and a 
SN graphite spherule (KE3d8) isolated from the Mur-
chison (CM) meteorite.  We selected U220GCA be-
cause its nano-diamond abundance (in acid etched 
thin-sections) appears to be as much as ~10X higher 
than in Murchison matrix, Tagish Lake because it has 
a higher reported nano-diamond abundance than other 
carbonaceous chondrites (~3650-4330 ppm) [6], and 
KE3d8 because it is a carbon spherule with an isotopic 
composition suggesting that it is a bone fide presolar 
SN grain [7].  
   Experimental procedures: Fragments of IDP 
U220GCA, Murchison matrix, and Tagish Lake were 
embedded in sulfur and thin sectioned using ultrami-
crotomy.   SN graphite spherule Ked38 was embedded 
and sectioned in epoxy.  The sections were mounted 
on continuous carbon films on gold and copper mesh 
TEM grids and examined using a 400 keV 

JEOL4000EX TEM and a 200 kV Hitachi HF2000 
field emission TEM.  Lattice-fringe imaging was used 
to determine the crystal structures and energy-
dispersive x-ray spectroscopy (EDS) was used to 
probe the compositions of regions immediately sur-
rounding individual nano-diamonds.   Lattice-fringe 
image calibration was obtained in-situ using gold 
<111> and graphitic carbon (002) spacings.   
   Results:  Figure 1 is a lattice-fringe image of a nano-
diamond in IDP U220GCA.  The crystal is embedded 
within amorphous carbonaceous material that forms a 
coating on an FeNi sulfide crystal on the surface of a 
GEM(S).  Most of the nano-diamonds we observed in 
U220GCA are concentrated within amorphous carbo-
naceous mantles on the surfaces of GEMS.  Figure 2 
(upper) shows a lattice-fringe image of nano-diamonds 
within an etched section of fine-grained matrix of 
Murchison.   Both crystals are associated with amor-
phous carbonaceous material.  Figure 2 (lower) is a 
lattice-fringe image of SN graphite spherule KD3d8 
from Murchison.  In contrast to the Murchison matrix 
carbon (Fig 2 (upper)), the SN spherule consists 
mostly of relatively well-ordered graphitic carbon dis-
playing concentric ~3.4 Å (002) fringes (Fig. 2 
(lower)).  Despite a systematic examination of multiple 
thin sections of the SN spherule we did not identify 
any nano-diamonds.  Figure 3 is a lattice-fringe image 
of carbonaceous material in Tagish Lake.   We have 
observed both amorphous and graphitic carbon in 
Tagish Lake but we have yet to identify nano-
diamonds. 
   Discussion: Despite the analytical difficulties inher-
ent in detecting low concentrations of individually 
dispersed nano-diamonds, we can offer preliminary 
remarks about the petrography of meteoritic nano-
diamonds in IDPS and meteorites. The carrier of nano-
diamonds in chondritic IDP U220GCA (and in three 
other IDPs [5]) is a disordered (amorphous) carbona-
ceous material (Fig. 1), and it is likely that the carrier 
contains organic components, e.g. polyaromatic hy-
drocarbons (PAHs) [8].  The carbonaceous carrier 
coats the surfaces of GEMS suggesting that the GEMS 
are older than the nano-diamonds.   Nano-diamonds 
appear to be preferentially associated with disordered 
carbonaceous material in Murchison matrix (Fig. 2 
(upper)), and they are also associated with disordered 
carbonaceous material in two “CM-like” polar micro-
meteorites that we have examined [5].  The absence of 
observable quantities of nano-diamonds in the Murchi-
son graphite spherule is surprising considering its 
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presolar SN origin (Fig. 2 (lower)).  However, carbon 
condensation conditions in the SN environment may 
have favored graphite rather than nano-diamond (and 
amorphous carbon) nucleation.    A fundamentally 
important question arising from our observations to 
date is whether meteoritic nano-diamonds are prefer-
entially associated with an (amorphous) organic carrier 
rather than a (graphitic) inorganic carrier.  But our data 
set of electron microscopic observations remains lim-
ited and we emphasize that the petrographic picture for 
nano-diamonds may change significantly as additional 
etched and unetched thin-sections are examined. 
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Figure 1.  Lattice fringe image of a nano-diamond em-
bedded in amorphous carbonaceous material that coats 
the surfaces of GEMS in cluster IDP U220GCA. 
 
 
 

 
Figure 2.  Nano-diamonds, amorphous carbon, and 
graphitic carbon in the Murchison meteorite. (Upper)  
Nano-diamonds embedded in amorphous carbon from 
the fine-grained matrix.  (Lower) Graphitic carbon 
without nano-diamonds in SN graphite spherule 
KE3d8. 
 
 
 

 
Figure 3.  Graphitic carbon without nano-diamonds in 
the Tagish lake meteorite. 
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